MA114 Summer 2018

Worksheet 7 - Sequences - 6/19/18

1. (a) What does it mean to say that $\lim _{x \rightarrow a} f(x)=L$? Does this differ from $\lim _{n \rightarrow \infty} f(n)=L$? Why or why not?
(b) What does it mean for a sequence to converge?
(c) Sequences can diverge in different ways. Describe at least two ways that a sequence can diverge.
(d) Give two examples of sequences that converge to 0 and two examples of sequences that converge to a given number $L \neq 0$.
2. Write the first five terms of the sequences with the following general terms.
(a) $\frac{n!}{2^{n}}$
(c) $(-1)^{n+1}$
(b) $\frac{n}{n+1}$
(d) $\left\{a_{n}\right\}_{n=1}^{\infty}$, where $a_{n}=\frac{3}{n}$.
3. Find a formula for the $n^{\text {th }}$ term of the sequence.
(a) $\left\{\frac{1}{1},-\frac{1}{8}, \frac{1}{27},-\frac{1}{64}, \ldots\right\}$
(b) $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots\right\}$
(c) $\{1,0,1,0,1,0 \ldots\}$
4. Suppose that a sequence is bounded above and below. Does it have to converge? If not, give a counterexample.
5. Remember that the limit laws for sequences are the same as the limit laws for functions. Suppose you have sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ with $a_{n} \rightarrow 15, b_{n} \rightarrow 0$, and $c_{n} \rightarrow 1$. Use the limit laws to answer the following questions.
(a) Does the sequence $\left\{\frac{a_{n} \cdot c_{n}}{b_{n}+1}\right\}_{n=1}^{\infty}$ converge? If so, what is its limit?
(b) Does the sequence $\left\{\frac{a_{n}+3 \cdot c_{n}}{2 \cdot b_{n}+2}\right\}_{n=1}^{\infty}$ converge? If so, what is its limit?
6. Write out the first five terms of
(a) $a_{0}=0, a_{1}=1$, and $a_{n+1}=3 a_{n-1}+a_{n}^{2}$.
(b) $a_{1}=6, a_{n+1}=\frac{a_{n}}{n}$.
(c) $a_{1}=2, a_{n+1}=\frac{a_{n}}{a_{n}+1}$.
(d) $a_{1}=2, a_{2}=1$, and $a_{n+1}=a_{n}-a_{n-1}$.
7. Assuming that the limit of the sequence exists, find the limit of the recursive sequence given by $a_{1}=1, a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-1}}\right)$.
